China factory PC120 PC100 113-27-21410 113-98-22210 203-27-41111 Crawler Excavator Roller Chain Sprockets

Product Description

PC120 PC100 113-27-21410 113-98-22210 203-27-41111 Crawler Excavator Roller Chain Sprockets

Material

40SiMnTi

Finish

Smooth

Colors

Black or yellow

Technique

Forging casting

Surface Hardness

HRC52-58

Warranty time

2000 hour

Certification

ISO9001-9002

FOB Price

FOB HangZhou USD 200-2000/Piece

MOQ

2 piece

Delivery Time

Within 30 days after contract established

For ktsu              
PC20-7 PC30 PC30-3 PC30-5 PC30-6 PC40-7 PC45 PC45-2 PC55
PC120-6 PC130 PC130-7 PC200 PC200-1 PC200-3 PC200-5 PC200-6 PC200-7
PC200-8 PC210-6 PC220-1 PC220-3 PC220-6 PC220-7 PC220-8 PC270-7 PC202B
PC220LC-6 PC220LC-8 PC240 PC300 PC300-3 PC300-5 PC300-6 PC300-7 PC300-7K
PC300LC-7 PC350-6/7 PC400 PC400-3 PC400-5 PC400-6 PC400lc-7 PC450-6 PC450-7
PC600 PC650 PC750 PC800 PC1100 PC1250 PC2000    
D20  D31 D50 D60 D61 D61PX D65A D65P D64P-12
D80 D85 D155 D275 D355        
For HITACHI              
EX40-1 EX40-2 EX55 EX60 EX60-2 EX60-3 EX60-5 EX70 EX75
EX100 EX110 EX120 EX120-1 EX120-2 EX120-3 EX120-5 EX130-1 EX200-1
EX200-2 EX200-3 EX200-5 EX220-3 EX220-5 EX270 EX300 EX300-1 EX300-2
EX300-3 EX300-5 EX300A EX330 EX370 EX400-1 EX400-2 EX400-3 EX400-5
EX450 ZAX30 ZAX55 ZAX200 ZAX200-2 ZAX330 ZAX450-1 ZAX450-3 ZAX450-5
ZX110 ZX120 ZX200 ZX200 ZX200-1 ZX200-3 ZX200-5g ZX200LC-3 ZX210
ZX210-3 ZX210-3 ZX210-5 ZX225 ZX240 ZX250 ZX270 ZX30 ZX330
ZX330 ZX350 ZX330C ZX450 ZX50        
For CATERPILLER              
E200B E200-5 E320D E215 E320DL E324D E324DL E329DL E300L
E320S E320 E320DL E240 E120-1 E311 E312B E320BL E345
E324 E140 E300B E330C E120 E70 E322C E322B E325
E325L E330 E450 CAT225 CAT312B CAT315 CAT320 CAT320C CAT320BL
CAT330 CAT322 CAT245 CAT325 CAT320L CAT973       
D3 D3C D4 D4D D4H D5M D5H D6 D6D
D6M D6R D6T D7 D7H D7R D8 D8N D8R
D9R D9N D9G D10          
For Sumitomo              
SH120  SH120-3 SH200 SH210-5 SH200 SH220-3 SH220-5/7 SH290-3 SH350-5/7
SH220 SH280 SH290-7 SH260 SH300 SH300-3 SH300-5 SH350 SH60
SH430                
For KOBELCO              
SK120-6 SK120-5 SK210-8 SK210LC-8 SK220 SK220-1 SK220-3 SK220-5/6 SK200 
SK200 SK200  SK200-3 SK200-6 SK200-8 SK200-5/6 SK60 SK290 SK100
SK230 SK250 SK250-8 SK260LC-8 SK300 SK300-2 SK300-4 SK310 SK320
SK330-8 SK330 SK350LC-8 SK235SR SK450 SK480 SK30-6    
For DAEWOO              
DH200 DH220-3 DH220 DH220S DH280-2 DH280-3 DH55 DH258 DH130
DH370 DH80 DH500 DH450 /DH225        
For HYUNDAI              
R60-5 R60-7 R60-7 R80-7 R200 R200-3 R210 R210 R210-9 
R210LC R210LC-7 R225 R225-3 R225-7 R250  R250-7 R290 R290LC
R290LC-7 R320 R360 R954          
For KATO              
HD512 HD1430 HD 512III HD 820III HD820R HD1430III HD700VII HD 1250VII HD250SE
HD400SE HD550SE HD1880            
For DOOSAN              
DX225  DX225LCA DX258 DX300 DX300LCA DX420 DX430    
For VOLVO              
EC160C EC160D EC180B EC180C EC180D EC210 EC210 EC210B EC240B
EC290 EC290B EC240 EC55 EC360 EC360B EC380D EC460 EC460B
EC460C EC700 EC140 EC140B EC160B      

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 2000 Hours
Type: Excavator Bucket
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

wheel sprocket

Factors Affecting the Efficiency of a wheel sprocket Setup

Several factors can influence the efficiency of a wheel sprocket system in power transmission and motion control applications. These factors should be carefully considered and optimized to ensure the system’s overall effectiveness and performance:

  • 1. Friction: Friction between the wheel, sprocket, and the chain or belt can lead to energy losses. Using high-quality materials and lubrication can help reduce friction and improve efficiency.
  • 2. Alignment: Proper alignment between the wheel and the sprocket is critical. Misalignment can cause increased wear, noise, and reduced efficiency. Regular maintenance and alignment checks are essential.
  • 3. Tension: The correct tension in the chain or belt is crucial for efficient power transmission. Too loose or too tight tension can lead to performance issues and premature wear.
  • 4. Material and Design: The choice of materials for the wheel sprocket, as well as their design, can impact efficiency. High-quality materials and well-engineered components reduce wear and improve overall system performance.
  • 5. Load Distribution: Uneven load distribution across the wheel sprocket can lead to localized wear and decreased efficiency. Ensuring proper load distribution helps maintain uniform wear and power transmission.
  • 6. Environmental Factors: Harsh environmental conditions, such as dust, moisture, and extreme temperatures, can affect the efficiency of the system. Choosing suitable materials and implementing protective measures can mitigate these effects.
  • 7. Maintenance: Regular maintenance, including lubrication, inspection, and timely replacement of worn components, is vital for the long-term efficiency of the system.
  • 8. Speed and Torque: The operating speed and torque requirements of the application should be considered when selecting the appropriate wheel sprocket size and specifications.
  • 9. Chain or Belt Type: Different types of chains or belts, such as roller chains, silent chains, or toothed belts, have varying efficiencies. Choosing the right type for the specific application is crucial.
  • 10. System Integration: The wheel sprocket system should be integrated correctly with other components in the machinery to ensure smooth operation and minimal energy losses.

By carefully considering and optimizing these factors, it is possible to improve the efficiency of the wheel sprocket system, leading to reduced energy consumption, less wear and tear, and overall better performance.

wheel sprocket

Temperature Limits for wheel sprocket System’s Operation

The temperature limits for a wheel sprocket system’s operation depend on the materials used in the construction of the components. Different materials have varying temperature tolerances, and exceeding these limits can lead to reduced performance, premature wear, and even system failure.

Here are some common materials used in wheel sprocket systems and their general temperature limits:

  • Steel: Steel sprockets and wheels, which are widely used in many applications, typically have a temperature limit ranging from -40°C to 500°C (-40°F to 932°F). However, the specific temperature range may vary based on the grade of steel and any coatings or treatments applied.
  • Stainless Steel: Stainless steel sprockets and wheels offer improved corrosion resistance and can withstand higher temperatures than regular steel. Their temperature limit is typically between -100°C to 600°C (-148°F to 1112°F).
  • Plastics: Plastic sprockets and wheels are commonly used in low-load and low-speed applications. The temperature limit for plastic components varies widely depending on the type of plastic used. In general, it can range from -40°C to 150°C (-40°F to 302°F).
  • Aluminum: Aluminum sprockets and wheels have a temperature limit of approximately -40°C to 250°C (-40°F to 482°F). They are often used in applications where weight reduction is critical.

It’s essential to consult the manufacturer’s specifications and material data sheets for the specific components used in the wheel sprocket system to determine their temperature limits accurately. Factors such as load, speed, and environmental conditions can also influence the actual temperature tolerance of the system.

When operating a wheel sprocket system near its temperature limits, regular monitoring and maintenance are necessary to ensure the components’ integrity and overall system performance. If the application involves extreme temperatures beyond the typical limits of the materials, specialized high-temperature materials or cooling measures may be required to maintain reliable operation.

wheel sprocket

How Does a wheel sprocket Assembly Transmit Power?

In a mechanical system, a wheel sprocket assembly is a common method of power transmission, especially when dealing with rotary motion. The process of power transmission through a wheel sprocket assembly involves the following steps:

1. Input Source:

The power transmission process begins with an input source, such as an electric motor, engine, or human effort. This input source provides the necessary rotational force (torque) to drive the system.

2. Wheel Rotation:

When the input source applies rotational force to the wheel, it starts to rotate around its central axis (axle). The wheel’s design and material properties are essential to withstand the applied load and facilitate smooth rotation.

3. Sprocket Engagement:

Connected to the wheel is a sprocket, which is a toothed wheel designed to mesh with a chain. When the wheel rotates, the sprocket’s teeth engage with the links of the chain, creating a positive drive system.

4. Chain Rotation:

As the sprocket engages with the chain, the rotational force is transferred to the chain. The chain’s links transmit this rotational motion along its length.

5. Driven Component:

The other end of the chain is connected to a driven sprocket, which is attached to the component that needs to be powered or driven. This driven component could be another wheel, a conveyor belt, or any other machine part requiring motion.

6. Power Transmission:

As the chain rotates due to the engagement with the sprocket, the driven sprocket also starts to rotate, transferring the rotational force to the driven component. The driven component now receives the power and motion from the input source via the wheel, sprocket, and chain assembly.

7. Output and Operation:

The driven component performs its intended function based on the received power and motion. For example, in a bicycle, the chain and sprocket assembly transmit power from the rider’s pedaling to the rear wheel, propelling the bicycle forward.

Overall, a wheel sprocket assembly is an efficient and reliable method of power transmission, commonly used in various applications, including bicycles, motorcycles, industrial machinery, and conveyor systems.

China factory PC120 PC100 113-27-21410 113-98-22210 203-27-41111 Crawler Excavator Roller Chain Sprockets  China factory PC120 PC100 113-27-21410 113-98-22210 203-27-41111 Crawler Excavator Roller Chain Sprockets
editor by CX 2024-03-27