China supplier Motocross Parts Chain Wheel CNC Aluminum 7075 Jt Sprocket for 520 Chain

Product Description

Product Description

Motocross  Parts Chain Wheel CNC Aluminum 7075 Jt Sprocket for 520 Chain

Lightweight High-Performance sprocket for added horsepower to the Front wheel
Features self cleaning grooves to clear mud and increase sprocket life
All rear sprockets are made of 7075 -T6 aluminum alloy and anodized for even greater wear
Advanced tooth profile, concentricity and accuracy of fit provide maximum power transfer and long-life
All the sprocket was made by machining centre which can gain more precise dimension and glabrous surface than common machine work.
We can skinpacking that is external appearance more beautiful.
CNC machined sprocket can be change the style according to customers’ requirements.
This sprocket can be oxidated into various colors .
Able to change sprocket toothnumber for customers’ requirements.

HangZhou xiangjin precision machinery co., ltd.
Material
Aluminum\Steel\Zinc\Brass\Plastic.
Surface Treatment
Nickel plating, Zinc plating, Chrome plating, Anodizing, black coating, mill
Tolerance
+/-0.01 mm
Inspection
Every single product at least 5 times of  inspection processes
Package
plastic bag, Bubble bag, box, carton, wooden case, skin packing

Equipment Quantity
CNC machining centre 15(contain 5axis processing centre)
CNC milling machine 2
CNC lathe 8
Cutting machine 4
Three – Comero 1
Welding machine 4
Punch 2
Blister packaging machine 1
Vibratory fininshing machine 2
Other machine 20

 

Detailed Photos

Certifications

Packaging & Shipping

Company Profile

FAQ

 

Shipping Cost:

Estimated freight per unit.



To be negotiated
After-sales Service: 7 Days
Warranty: 6 Months
Type: Transmission
Customization:
Available

|

Customized Request

wheel sprocket

Alternatives to Chain Sprockets in wheel sprocket Configuration

While chain sprockets are commonly used in wheel sprocket configurations, there are alternative methods for power transmission in various applications:

  • Gear and Gear Rack: Gears are toothed wheels that mesh with each other to transmit power. Instead of using a chain and sprocket, gears can directly engage with each other, offering a smooth and efficient power transfer. Gear racks, which are linear gears, can be used in place of wheels for linear motion applications.
  • Belt and Pulley: Belts and pulleys offer a flexible and quiet means of power transmission. They work similarly to chain and sprocket systems but use belts instead of chains. Pulleys have grooves that grip the belt, allowing power to be transferred between the pulleys.
  • Gear Train: A gear train consists of multiple gears meshed together to achieve specific speed and torque ratios. Gear trains are often used in complex machinery and mechanical systems where precise power transmission is required.
  • Direct Drive: In some applications, direct drive mechanisms can be used, where the motor or power source is directly connected to the wheel or load without any intermediate components like sprockets or gears.
  • Friction Drive: Friction drive systems use the friction between two surfaces to transfer power. One surface, such as a rubber wheel, is pressed against another surface to achieve power transmission.

The choice of alternative power transmission methods depends on various factors, including the application requirements, available space, speed, torque, and efficiency considerations. Each alternative method has its advantages and limitations, and the selection should be based on the specific needs of the mechanical system.

When considering alternatives to chain sprockets, it is essential to analyze the requirements of your application and consult with engineering experts or manufacturers to determine the most suitable method of power transmission for optimal performance and longevity.

wheel sprocket

Using wheel sprocket Assembly in Robotics and Automation

Yes, wheel sprocket assemblies are commonly used in robotics and automation systems to transmit power and facilitate movement. These systems offer several advantages for robotic applications:

  • Efficiency: wheel sprocket assemblies provide efficient power transmission, ensuring smooth and precise movement of robotic components.
  • Compact Design: The compact nature of sprockets and wheels allows for space-saving designs, making them ideal for robotic applications where space is limited.
  • Precision: Sprockets and wheels with accurate teeth profiles provide precise motion control, crucial for robotics and automation tasks that require high levels of accuracy.
  • Low Noise: Properly lubricated and maintained wheel sprocket systems generate minimal noise during operation, contributing to quieter robotic movements.
  • Customizability: wheel sprocket assemblies can be customized to suit specific robotic requirements, such as different gear ratios, sizes, and materials.
  • Multiple Configurations: Depending on the robotic application, different configurations like single or multiple sprockets, idler sprockets, or rack and pinion systems can be used.
  • High Load Capacity: Sprockets made from durable materials like steel can handle substantial loads, making them suitable for heavy-duty robotic tasks.

Examples of robotics and automation systems that commonly use wheel sprocket assemblies include:

  • Robotic Arms: wheel sprocket systems are utilized in robotic arms to control their movement and reach.
  • Automated Guided Vehicles (AGVs): AGVs use wheel sprocket assemblies for propulsion and steering, enabling them to navigate autonomously.
  • Conveyor Systems: In automated factories, conveyor belts are often driven by sprockets and wheels for efficient material handling.
  • Mobile Robots: Wheeled mobile robots use wheel sprocket assemblies to drive their wheels, enabling them to move in various directions.
  • Robot Grippers: wheel sprocket mechanisms can be integrated into robot grippers to facilitate gripping and handling objects.

The choice to use wheel sprocket assemblies in robotics and automation depends on the specific application requirements, load capacity, precision, and environmental conditions. By selecting the appropriate sprockets, wheels, and materials, engineers can ensure reliable and efficient robotic performance in a wide range of automated tasks.

wheel sprocket

Calculating Gear Ratio for a wheel sprocket Setup

In a wheel sprocket system, the gear ratio represents the relationship between the number of teeth on the sprocket and the number of teeth on the wheel. The gear ratio determines the speed and torque relationship between the two components. To calculate the gear ratio, use the following formula:

Gear Ratio = Number of Teeth on Sprocket ÷ Number of Teeth on Wheel

For example, if the sprocket has 20 teeth and the wheel has 60 teeth, the gear ratio would be:

Gear Ratio = 20 ÷ 60 = 1/3

The gear ratio can also be expressed as a decimal or percentage. In the above example, the gear ratio can be expressed as 0.3333 or 33.33%.

It’s important to note that the gear ratio affects the rotational speed and torque of the wheel sprocket. A gear ratio greater than 1 indicates that the sprocket’s speed is higher than the wheel’s speed, resulting in increased rotational speed and reduced torque at the wheel. Conversely, a gear ratio less than 1 indicates that the sprocket’s speed is lower than the wheel’s speed, resulting in decreased rotational speed and increased torque at the wheel.

The gear ratio is crucial in various applications where precise control of speed and torque is required, such as bicycles, automobiles, and industrial machinery.

China supplier Motocross Parts Chain Wheel CNC Aluminum 7075 Jt Sprocket for 520 Chain  China supplier Motocross Parts Chain Wheel CNC Aluminum 7075 Jt Sprocket for 520 Chain
editor by CX 2023-10-04