Product Description
SPROCKET 1” X 17.02mm 16B SERIES SPROCKETS
For Chain Acc.to DIN8187 ISO/R 606 | |||||
Tooth Radius r3 | 26.0mm | ||||
Radius Width C | 2.5mm | ||||
Tooth Width b1 | 15.8mm | ||||
Tooth Width B1 | 16.2mm | ||||
Tooth Width B2 | 47.7mm | ||||
Tooth Width B3 | 79.6mm | ||||
16B SERIES ROLLER CHAINS | |||||
Pitch | 25.4 mm | ||||
Internal Width | 17.02 mm | ||||
Roller Diameter | 15.88mm |
Products Show
Z | de | dp | SIMPLEX | DUPLEX | TRIPLEX | ||||||
dm | D1 | A | dm | D2 | A | dm | D2 | A | |||
8 | 77.0 | 66.37 | 42 | 16 | 35 | 42 | 16 | 65 | 42 | 20 | 95 |
9 | 85.0 | 74.27 | 50 | 16 | 35 | 50 | 16 | 65 | 50 | 20 | 95 |
10 | 93.0 | 82.19 | 55 | 16 | 35 | 56 | 16 | 65 | 56 | 20 | 95 |
11 | 105.1 | 90.14 | 61 | 16 | 40 | 64 | 20 | 70 | 64 | 25 | 100 |
12 | 109.0 | 98.14 | 69 | 16 | 40 | 72 | 20 | 70 | 72 | 25 | 100 |
13 | 117.0 | 106.12 | 78 | 16 | 40 | 80 | 20 | 70 | 80 | 25 | 100 |
14 | 125.0 | 114.15 | 84 | 16 | 40 | 88 | 20 | 70 | 88 | 25 | 100 |
15 | 133.0 | 122.17 | 92 | 16 | 40 | 96 | 20 | 70 | 96 | 25 | 100 |
16 | 141.0 | 130.20 | 100 | 20 | 45 | 104 | 20 | 70 | 104 | 25 | 100 |
17 | 149.0 | 138.22 | 100 | 20 | 45 | 112 | 20 | 70 | 112 | 25 | 100 |
18 | 157.0 | 146.28 | 100 | 20 | 45 | 120 | 20 | 70 | 120 | 25 | 100 |
19 | 165.2 | 154.33 | 100 | 20 | 45 | 128 | 20 | 70 | 128 | 25 | 100 |
20 | 173.2 | 162.38 | 100 | 20 | 45 | 130 | 20 | 70 | 130 | 25 | 100 |
21 | 181.2 | 170.43 | 110 | 20 | 50 | 130 | 25 | 70 | *130 | 25 | 100 |
22 | 189.3 | 178.48 | 110 | 20 | 50 | *130 | 25 | 70 | *130 | 25 | 100 |
23 | 197.5 | 186.53 | 110 | 20 | 50 | *130 | 25 | 70 | *130 | 25 | 100 |
24 | 205.5 | 194.59 | 110 | 20 | 50 | *130 | 25 | 70 | *130 | 25 | 100 |
25 | 213.5 | 202.66 | 110 | 20 | 50 | *130 | 25 | 70 | *130 | 25 | 100 |
26 | 221.6 | 210.72 | 120 | 20 | 50 | *130 | 25 | 70 | *130 | 30 | 100 |
27 | 229.6 | 218.79 | 120 | 20 | 50 | *130 | 25 | 70 | *130 | 30 | 100 |
28 | 237.7 | 226.85 | 120 | 20 | 50 | *130 | 25 | 70 | *130 | 30 | 100 |
29 | 245.8 | 234.92 | 120 | 20 | 50 | *130 | 25 | 70 | *130 | 30 | 100 |
30 | 254.0 | 243.00 | 120 | 20 | 50 | *130 | 25 | 70 | *130 | 30 | 100 |
31 | 262.0 | 251.08 | *120 | 25 | 50 | *140 | 25 | 70 | *140 | 30 | 100 |
32 | 270.0 | 259.13 | *120 | 25 | 50 | *140 | 25 | 70 | *140 | 30 | 100 |
33 | 278.5 | 267.21 | *120 | 25 | 50 | *140 | 25 | 70 | *140 | 30 | 100 |
34 | 287.0 | 275.28 | *120 | 25 | 50 | *140 | 25 | 70 | *140 | 30 | 100 |
35 | 296.2 | 283.36 | *120 | 25 | 50 | *140 | 25 | 70 | *140 | 30 | 100 |
36 | 304.6 | 291.44 | *120 | 25 | 50 | *140 | 25 | 70 | *140 | 30 | 100 |
37 | 312.6 | 299.51 | *120 | 25 | 50 | *140 | 25 | 70 | *140 | 30 | 100 |
38 | 320.7 | 307.59 | *120 | 25 | 50 | *140 | 25 | 70 | *140 | 30 | 100 |
39 | 328.8 | 315.67 | *120 | 25 | 50 | *140 | 25 | 70 | *140 | 30 | 100 |
40 | 336.9 | 323.75 | *120 | 25 | 50 | *140 | 25 | 70 | *140 | 30 | 100 |
41 | 345.0 | 331.81 | *125 | 25 | 68 | *140 | 25 | 70 | *160 | 30 | 100 |
42 | 353.0 | 339.89 | *125 | 25 | 68 | *140 | 25 | 70 | *160 | 30 | 100 |
43 | 361.1 | 347.97 | *125 | 25 | 68 | *140 | 25 | 70 | *160 | 30 | 100 |
44 | 369.1 | 356.05 | *125 | 25 | 68 | *140 | 25 | 70 | *160 | 30 | 100 |
45 | 377.1 | 364.12 | *125 | 25 | 68 | *140 | 25 | 70 | *160 | 30 | 100 |
46 | 385.2 | 372.20 | *125 | 25 | 68 | *140 | 25 | 70 | *160 | 30 | 100 |
47 | 393.2 | 380.28 | *125 | 25 | 68 | *140 | 25 | 70 | *160 | 30 | 100 |
48 | 401.3 | 388.36 | *125 | 25 | 68 | *140 | 25 | 70 | *160 | 30 | 100 |
49 | 409.3 | 396.44 | *125 | 25 | 68 | *140 | 25 | 70 | *160 | 30 | 100 |
50 | 417.4 | 404.52 | *125 | 25 | 68 | *140 | 25 | 70 | *160 | 30 | 100 |
51 | 425.5 | 412.60 | *125 | 25 | 68 | *150 | 25 | 85 | *180 | 30 | 110 |
52 | 433.6 | 420.68 | *125 | 25 | 68 | *150 | 25 | 85 | *180 | 30 | 110 |
53 | 441.7 | 428.76 | *125 | 25 | 68 | *150 | 25 | 85 | *180 | 30 | 110 |
54 | 448.3 | 436.84 | *125 | 25 | 68 | *150 | 25 | 85 | *180 | 30 | 110 |
55 | 457.9 | 444.92 | *125 | 25 | 68 | *150 | 25 | 85 | *180 | 30 | 110 |
56 | 466.0 | 453.01 | *125 | 25 | 68 | *150 | 25 | 85 | *180 | 30 | 110 |
57 | 474.0 | 461.08 | *125 | 25 | 68 | *150 | 25 | 85 | *180 | 30 | 110 |
58 | 482.1 | 469.16 | *133 | 25 | 68 | *150 | 25 | 85 | *180 | 30 | 110 |
59 | 490.2 | 477.24 | *133 | 25 | 68 | *150 | 25 | 85 | *180 | 30 | 110 |
60 | 498.3 | 485.23 | *133 | 25 | 68 | *150 | 25 | 85 | *180 | 30 | 110 |
62 | 514.5 | 501.49 | *133 | 25 | 68 | *150 | 25 | 85 | *180 | 30 | 110 |
64 | 530.7 | 517.65 | *140 | 25 | 68 | *160 | 25 | 90 | *180 | 30 | 110 |
65 | 538.8 | 525.73 | *140 | 25 | 68 | *160 | 25 | 90 | *180 | 30 | 110 |
66 | 546.8 | 533.80 | *140 | 25 | 68 | *160 | 25 | 90 | *180 | 30 | 110 |
68 | 562.9 | 549.98 | *140 | 25 | 68 | *160 | 25 | 90 | *180 | 30 | 110 |
70 | 579.2 | 566.15 | *140 | 25 | 68 | *160 | 25 | 90 | *180 | 30 | 110 |
72 | 595.4 | 582.31 | *140 | 25 | 68 | *160 | 25 | 90 | *180 | 30 | 110 |
75 | 619.7 | 606.56 | *140 | 25 | 68 | *160 | 25 | 90 | *180 | 30 | 110 |
76 | 627.0 | 614.64 | *140 | 25 | 68 | *160 | 25 | 90 | *180 | 30 | 110 |
78 | 643.3 | 630.81 | *140 | 25 | 68 | *160 | 25 | 90 | *180 | 30 | 110 |
80 | 660.0 | 646.97 | *140 | 25 | 68 | *160 | 25 | 90 | *180 | 30 | 110 |
85 | 699.9 | 687.39 | *140 | 25 | 78 | *160 | 25 | 90 | *180 | 30 | 110 |
90 | 740.3 | 727.80 | *140 | 25 | 78 | *160 | 25 | 90 | *180 | 30 | 110 |
95 | 781.1 | 768.22 | *140 | 25 | 78 | *160 | 25 | 90 | *180 | 30 | 110 |
100 | 821.1 | 808.64 | *140 | 25 | 78 | *160 | 25 | 90 | *180 | 30 | 110 |
110 | 902.0 | 889.48 | *140 | 25 | 78 | *160 | 25 | 90 | *180 | 30 | 110 |
114 | 934.3 | 921.81 | *140 | 25 | 78 | *160 | 25 | 90 | *180 | 30 | 110 |
120 | 982.8 | 970.32 | *140 | 25 | 78 | *160 | 25 | 90 | *180 | 30 | 110 |
125 | 1571.3 | 1571.73 | *140 | 25 | 78 | *160 | 25 | 90 | *180 | 30 | 110 |
Notice: *welding hub
BASIC INFO.
Product name | DIN ISO Standard Sprocket for Roller Chain |
Materials Available | 1. Stainless Steel: SS304, SS316, etc |
2. Alloy Steel: C45, 45Mn, 42CrMo, 20CrMo, etc | |
3. OEM according to your request | |
Surface Treatment | Heat treatment, Quenching treatment, High frequency normalizing treatment, Polishing, Electrophoresis paint processing, Anodic oxidation treatment, etc |
Characteristic | Fire Resistant, Oil Resistant, Heat Resistant, CZPT resistance, Oxidative resistance, Corrosion resistance, etc |
Design criterion | ISO DIN ANSI & Customer Drawings |
Size | Customer Drawings & ISO standard |
Application | Industrial transmission equipment |
Package | Wooden Case / Container and pallet, or made-to-order |
Certificate | ISO9001: 2008 |
Advantage | Quality first, Service first, Competitive price, Fast delivery |
Delivery Time | 20 days for samples. 45 days for official order. |
INSTALLATION AND USING
The chain wheel, as a drive or deflection for chains, has pockets to hold the chain links with a D-profile cross section with flat side surfaces parallel to the centre plane of the chain links, and outer surfaces at right angles to the chain link centre plane. The chain links are pressed firmly against the outer surfaces and each of the side surfaces by the angled laying surfaces at the base of the pockets, and also the support surfaces of the wheel body together with the end sides of the webs formed by the leading and trailing walls of the pocket.
NOTICE
When fitting new chain spoket it is very important that a new chain is fitted at the same time, and vice versa. Using an old chain with new sprockets, or a new chain with old sprockets will cause rapid wear.
It is important if you are installing the chainwheels yourself to have the factory service manual specific to your model. Our chainwheels are made to be a direct replacement for your OEM chainwheels and as such, the installation should be performed according to your models service manual.
During use a chain will stretch (i.e. the pins will wear causing extension of the chain). Using a chain which has been stretched more than the above maximum allowance causes the chain to ride up the teeth of the sprocket. This causes damage to the tips of the chainwheels teeth, as the force transmitted by the chain is transmitted entirely through the top of the tooth, rather than the whole tooth. This results in severe wearing of the chainwheel.
FOR CHAIN STHangZhouRDS
Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.
ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25
ASME/ANSI B29.1-2011 Roller Chain Standard Sizes | ||||
Size | Pitch | Maximum Roller Diameter | Minimum Ultimate Tensile Strength | Measuring Load |
---|---|---|---|---|
25 | 0.250 in (6.35 mm) | 0.130 in (3.30 mm) | 780 lb (350 kg) | 18 lb (8.2 kg) |
35 | 0.375 in (9.53 mm) | 0.200 in (5.08 mm) | 1,760 lb (800 kg) | 18 lb (8.2 kg) |
41 | 0.500 in (12.70 mm) | 0.306 in (7.77 mm) | 1,500 lb (680 kg) | 18 lb (8.2 kg) |
40 | 0.500 in (12.70 mm) | 0.312 in (7.92 mm) | 3,125 lb (1,417 kg) | 31 lb (14 kg) |
50 | 0.625 in (15.88 mm) | 0.400 in (10.16 mm) | 4,880 lb (2,210 kg) | 49 lb (22 kg) |
60 | 0.750 in (19.05 mm) | 0.469 in (11.91 mm) | 7,030 lb (3,190 kg) | 70 lb (32 kg) |
80 | 1.000 in (25.40 mm) | 0.625 in (15.88 mm) | 12,500 lb (5,700 kg) | 125 lb (57 kg) |
100 | 1.250 in (31.75 mm) | 0.750 in (19.05 mm) | 19,531 lb (8,859 kg) | 195 lb (88 kg) |
120 | 1.500 in (38.10 mm) | 0.875 in (22.23 mm) | 28,125 lb (12,757 kg) | 281 lb (127 kg) |
140 | 1.750 in (44.45 mm) | 1.000 in (25.40 mm) | 38,280 lb (17,360 kg) | 383 lb (174 kg) |
160 | 2.000 in (50.80 mm) | 1.125 in (28.58 mm) | 50,000 lb (23,000 kg) | 500 lb (230 kg) |
180 | 2.250 in (57.15 mm) | 1.460 in (37.08 mm) | 63,280 lb (28,700 kg) | 633 lb (287 kg) |
200 | 2.500 in (63.50 mm) | 1.562 in (39.67 mm) | 78,175 lb (35,460 kg) | 781 lb (354 kg) |
240 | 3.000 in (76.20 mm) | 1.875 in (47.63 mm) | 112,500 lb (51,000 kg) | 1,000 lb (450 kg |
For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):
Pitch (inches) | Pitch expressed in eighths |
ANSI standard chain number |
Width (inches) |
---|---|---|---|
1⁄4 | 2⁄8 | 25 | 1⁄8 |
3⁄8 | 3⁄8 | 35 | 3⁄16 |
1⁄2 | 4⁄8 | 41 | 1⁄4 |
1⁄2 | 4⁄8 | 40 | 5⁄16 |
5⁄8 | 5⁄8 | 50 | 3⁄8 |
3⁄4 | 6⁄8 | 60 | 1⁄2 |
1 | 8⁄8 | 80 | 5⁄8 |
Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.
Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.
Roller chains made using ISO standard are sometimes called as isochains.
WHY CHOOSE US
1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System
The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.
We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.
Q:Why choose us ?
A. we are a manufacturer, we have manufactured Chain and Sprocket for over 20 years .
B. Reliable Quality Assurance System;
C. Cutting-Edge Computer-Controlled CNC Machines;
D. Bespoke Solutions from Highly Experienced Specialists;
E. Customization and OEM Available for Specific Application;
F. Extensive Inventory of Spare Parts and Accessories;
G. Well-Developed CZPT Marketing Network;
H. Efficient After-Sale Service System
Q. what is your payment term?
A: 30% TT deposit, 70% balance T/T before shipping.
Q:Can we print our logo on your products?
A: yes, we offer OEM/ODM service, we support the customized logo, size, package,etc.
Q: Can you make chains according to my CAD drawings?
A: Yes. Besides the regular standard chains, we produce non-standard and custom-design products to meet the specific technical requirements. In reality, a sizable portion of our production capacity is assigned to make non-standard products.
Q: what is your main market?
A: North America, South America, Eastern Europe, Western Europe, Southeast Asia, Africa, Oceania, Mid East, Eastern Asia,
Q: Can I get samples from your factory?
A: Yes, Samples can be provided.
Q: If products have some quality problem, how would you deal with?
A: We will responsible for all the quality problems.
Shipping Cost:
Estimated freight per unit. |
To be negotiated |
---|
Standard Or Nonstandard: | Nonstandard |
---|---|
Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Motor, Electric Cars, Motorcycle, Machinery |
Hardness: | Hardened Tooth Surface |
Samples: |
US$ 0/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
Factors Affecting the Efficiency of a wheel sprocket Setup
Several factors can influence the efficiency of a wheel sprocket system in power transmission and motion control applications. These factors should be carefully considered and optimized to ensure the system’s overall effectiveness and performance:
- 1. Friction: Friction between the wheel, sprocket, and the chain or belt can lead to energy losses. Using high-quality materials and lubrication can help reduce friction and improve efficiency.
- 2. Alignment: Proper alignment between the wheel and the sprocket is critical. Misalignment can cause increased wear, noise, and reduced efficiency. Regular maintenance and alignment checks are essential.
- 3. Tension: The correct tension in the chain or belt is crucial for efficient power transmission. Too loose or too tight tension can lead to performance issues and premature wear.
- 4. Material and Design: The choice of materials for the wheel sprocket, as well as their design, can impact efficiency. High-quality materials and well-engineered components reduce wear and improve overall system performance.
- 5. Load Distribution: Uneven load distribution across the wheel sprocket can lead to localized wear and decreased efficiency. Ensuring proper load distribution helps maintain uniform wear and power transmission.
- 6. Environmental Factors: Harsh environmental conditions, such as dust, moisture, and extreme temperatures, can affect the efficiency of the system. Choosing suitable materials and implementing protective measures can mitigate these effects.
- 7. Maintenance: Regular maintenance, including lubrication, inspection, and timely replacement of worn components, is vital for the long-term efficiency of the system.
- 8. Speed and Torque: The operating speed and torque requirements of the application should be considered when selecting the appropriate wheel sprocket size and specifications.
- 9. Chain or Belt Type: Different types of chains or belts, such as roller chains, silent chains, or toothed belts, have varying efficiencies. Choosing the right type for the specific application is crucial.
- 10. System Integration: The wheel sprocket system should be integrated correctly with other components in the machinery to ensure smooth operation and minimal energy losses.
By carefully considering and optimizing these factors, it is possible to improve the efficiency of the wheel sprocket system, leading to reduced energy consumption, less wear and tear, and overall better performance.
Vertical Power Transmission with wheel sprocket System
Yes, a wheel sprocket system can be used for vertical power transmission. In such cases, the system is designed to transmit power and motion between vertically aligned shafts. Vertical power transmission using a wheel sprocket assembly follows similar principles to horizontal transmission, but there are some factors to consider:
- Load and Torque: When transmitting power vertically, the weight of the load can significantly impact the torque requirements. The torque must be sufficient to lift the load against gravity while accounting for friction and other resistive forces.
- Sprocket Selection: Choosing the right sprocket is critical for vertical transmission. The sprocket teeth must be designed to engage the chain or belt effectively and prevent slipping, especially when lifting heavy loads.
- Lubrication: Proper lubrication is essential to reduce friction and wear in the system. Vertical applications may require specific lubricants to ensure smooth operation and prevent premature failure.
- Tensioning: Maintaining the correct tension in the chain or belt is crucial for vertical power transmission. Proper tension helps prevent sagging and ensures proper engagement between the wheel sprocket.
- Overhung Load: In vertical setups, the weight of the sprocket and shaft assembly can impose an overhung load on the bearings. Adequate support and bearing selection are necessary to handle this load.
Vertical power transmission with a wheel sprocket system is commonly used in various applications, including conveyor systems, elevators, and some industrial machinery. Proper design, installation, and maintenance are essential to ensure safe and efficient operation in vertical configurations.
Eco-Friendly Materials for Manufacturing Wheels and Sprockets
Yes, there are eco-friendly materials used for manufacturing wheels and sprockets. As industries strive to reduce their environmental impact and promote sustainability, manufacturers are exploring alternative materials that are more environmentally friendly. Some of the eco-friendly materials used for manufacturing wheels and sprockets include:
1. Recycled Materials:
Using recycled materials, such as recycled plastic or metal, can significantly reduce the demand for virgin raw materials and lower the overall carbon footprint. These materials are obtained from post-consumer or post-industrial waste and processed to create new products, reducing the need for new resource extraction.
2. Biodegradable Materials:
Biodegradable plastics, such as PLA (polylactic acid) and PHA (polyhydroxyalkanoates), are derived from renewable plant sources and can break down naturally in the environment. These materials are gaining popularity for applications where disposal or end-of-life considerations are critical.
3. Sustainable Composites:
Manufacturers are developing sustainable composite materials that combine renewable fibers, such as bamboo, hemp, or flax, with biodegradable resins. These composites offer good strength and rigidity while being more environmentally friendly compared to traditional fiber-reinforced plastics.
4. Natural Materials:
In some cases, natural materials like wood or bamboo are used to create sprockets and wheels for specific applications. These materials are renewable and biodegradable, making them a more sustainable choice.
5. Low-Toxicity Materials:
Some eco-friendly materials focus on reducing the use of harmful chemicals during manufacturing. Low-toxicity materials are not only better for the environment but also for the health and safety of workers involved in the production process.
When selecting eco-friendly materials for wheels and sprockets, it’s essential to consider factors such as the specific application, load-bearing requirements, and the material’s end-of-life characteristics. Manufacturers and users can contribute to environmental sustainability by opting for these eco-friendly alternatives in their machinery and equipment.
editor by CX 2023-08-31